特斯拉和沃尔沃的自动驾驶,特斯拉推出自动化专用ASIC,全自动驾驶汽车将会迎来新转机吗?

编辑:小道 2019-08-13 09:58:29 互联网
浏览:128次
文章简介:1,特斯拉推出自动化专用ASIC,全自动驾驶汽车将会迎来新转机吗?在特斯拉的生产期间对这个硬件进行的开发和运用,对于任何公司来说都是一个前所未有的壮举,更不用说对汽车制造商。我描述一下特斯拉的平台优势

1,特斯拉推出自动化专用ASIC,全自动驾驶汽车将会迎来新转机吗?

特斯拉推出自动化专用ASIC,全自动驾驶汽车将会迎来新转机吗?

在特斯拉的生产期间对这个硬件进行的开发和运用,对于任何公司来说都是一个前所未有的壮举,更不用说对汽车制造商。我描述一下特斯拉的平台优势:

理解特斯拉在超级计算机方面所做的工作的关键,在于理解2019年一个建立和支持完整定制半导体设计团队的模式。事实上,令人惊讶的是,他们已经在运输这台计算机,并改装成现有的X,S和3模型。这不是特斯拉预先宣布的,而是在生产过程中宣布的。

理解Elon Musk的关键是把他说的夸张的东西和事实分清楚——他很擅长混淆他们。从昨天的披露来看,最重要的是,这一芯片不仅是在生产厂进入全面生产,而且已经在车里面了。

在“x”时间尺度上做一些完全自主这样的事情是一种承诺,但为物理世界中的像素构建了一个全新的渲染引擎是另一回事。尽管任何先前计划的“完全自主”的说法都是假设、营销,并受行业需求和法规的约束,但后者是特斯拉确实能够控制的。

当曲线以指数速度弯曲时,那些改进常常被认为是理所当然的。我们习惯了用摩尔定律解释。许多聪明人正确地把硬件开发看作是由于已知原因而呈指数增长的映射,但是事实上软件创新并不是这样发生的。算法通常不会每两年快两倍,而是需要足够强大的硬件允许它们运行得更快。

然而,自动驾驶的局限性是涉及整个系统的。它们与仅在一个轴上的问题创新无关。在全系统范围内提高自动驾驶能力的关键是数据收集和实时决策数据的规模化。特斯拉的数据收集正以线性速度增长,但还有一件人们忽视的事。由于处理图像数据背后的数学问题,整个系统的改进也呈指数级发展。

特斯拉没有提及的一部分内容是他们围绕新的数学转换方法所做的工作,这一方法促进数据更加有效。三维图像处理——连接数据帧并以新的方式应用转换——是一个非常强大的研究领域,因为图像处理几乎涉及到当今的所有领域。

当我学习电气工程和图像处理的时候,我永远不会忘记,当我的大学教授在我们学校附近的217号公路的上训练图像转换。这些操作能够从完全不同的角度输入其他图像,并且能够检测到高速公路的一部分,而这些部分在人类看来,似乎没有任何共同点。这种形式的数学转换使图像数据比表面看起来更有价值,在今天的领域也有着密切的使用。计算机就像是一只在获得足够的图像后知道如何学习一种小狗。

在复杂的数学变换中,创新让收集到的数据矩阵操作更加有效,并且现在正以惊人的速度在改进。特别是对于自动驾驶来说,他们专注于执行图像深度传感的软件算法,并且迅速发展。就在上周,康奈尔大学运用这种方法对伪激光雷达深度的估计已经说明了这一点。他们通过从原始图像数据中创建一个伪激光雷达点平面来建立深度模型。他们的结论甚至令人吃惊:

我们从这一修正中得到的改进是前所未有的,对所有方法都有同样的影响。随着量子跃迁,基于图像的自主飞行器三维目标检测在不久的将来将成为现实。这带来的影响是巨大的。目前,LiDAR(激光雷达)硬件可以说是自主驾驶所需的最昂贵的附加组件。如果没有它,自动驾驶的额外硬件成本将相对较小。

Elon说激光雷达是一个神话,因为它是一个硬件级的进步,它依赖于生产固态设备和商业化它的数量。事实是,半导体供应链的运作方式就是将激光雷达硬件保持一个的高成本的状态,并且不可能满足芯片公司能够盈利的范围。激光雷达是体积小并对环境友好。除了汽车行业,还有谁需要激光雷达?几乎没有。

想想看。我们都知道现在的激光雷达成本是令人望而却步的。看起来和威莫(Waymo)的汽车有着很好的联系,但事实上更换激光雷达是一个噩梦。但是说一些在未来将花费100美元的实验,说这个方法是可行的。模块是固态的,每辆车需要几个。即使这样,经济方面也说不过去。丰田会不会突然在几款车型上加上这一款?即使他们每年要购买一百万台这样的设备,这对激光雷达设备供应商来说也是一笔1亿美元的交易。这听起来可能很多,但事实并非如此。开发这种设备很容易就要花费1亿美元以上。半导体技术的可悲在于,任何人都需要大量的专用芯片来做生意。有一些例外,但汽车,实际上花费的每一美元都很重要。

同时,图像传感正在以“光速”前进,到处都在使用它。如此盛大的经济规模确实令人震惊。今年就将运送数十亿个图像传感器。它们存在于每一部手机、安全摄像头、无处不在的监控技术中,并且在3-4年内——当人们认为激光雷达可能出现在汽车上的时候——AR耳机将推动数亿个具有更高分辨率的高级图像处理芯片进一步发展。

在这段时间内,特斯拉还将把汽车上的图像传感器升级到智能手机和照相机行业的图像传感器上,让复杂的深度建模数学能够运行的更快更好——和摩尔定律类似。在不久的将来,特斯拉可能会在其汽车上安装8K图像传感器。这些新的SKU将不同于现在的Tesla,将运行不同的算法集,利用精度更高的保真度矩阵。

所以…自动驾驶汽车并不是孤立的软件或硬件问题。除了拥有一个完全调整过的系统之外,特斯拉还将用新的方式对收集到的数据执行的数学运算。当然,他们不会谈论这件事。他们只会在引擎盖下的“软件”上发布新的改进,当一个3型的OTA更新到来时,你的车会突然变得更好。

激光雷达是一个有不足的方法。随着3D图像处理将收集到的数据推向人眼的极限时,它将变得过时。激光雷达的点面信息与可见光域中收集到的信息之间的差距将在未来3年内完全消除。智能电子工程师正在全球范围内解决这个问题。

那么,这一切如何影响特斯拉何时将达到L5自动驾驶?这要视情况而定。完全自动化是一个很难解决的事情,而且人们也不需要它。因此进程也会在监管下变得缓慢。Elon的夸张评论很适合这样。更可能的是,在地方管辖区将允许小规模的自动化推广,而特斯拉似乎让你非常接近。在这个过渡阶段,车辆需要人工驾驶。

汽车制造商快速发展的关键在于在兼容性和未来可选性之间复杂的权衡。特斯拉是唯一一个已经证明他们可以做到这一点的人。特斯拉正在积累大量的学习经验,以阴影模式训练现实世界的数据。它的规模使得模拟数据明显较弱。你想在没有方向盘的情况下驾驶一辆经过模拟环境训练的车,还是想在现实世界中学习的车?老实说,很难说特斯拉是否会成为这个市场的赢家。这是一个复杂的微积分,他们现在所从事的行业是一个非常难成功的行业。有几种方法来看待这个问题。一是他们怎么可能成功?另一个问题是,其他人怎么一起成功呢?另一些人在路上没有汽车,他们依靠的是一些未来的技术,这些技术可能看不到白天的光线(固态激光雷达),而且到那时肯定已经过时了。

在这一切中,最后的胜利者显而易见:基于图像的处理和识别。在实现自动化的竞争结束之前,这一点变得非常明确。汽车工业的发展将继续在其自身的暴力中寻求和平。毕竟,在整个技术中的创新创造了新的开端和但也有破坏性的结局。智能手机战争带来的图像处理 “和平竞赛”确实会使世界变得更安全,不管这场竞争何时以及如何发生,这都是合情合理的。

2,什么才是制约自动驾驶发展的最大问题?

什么才是制约自动驾驶发展的最大问题?

“大爆炸”将至:什么才是制约自动驾驶发展的最大问题?

自动驾驶时代即将来临

2018年是自动驾驶的大年。在经历了这两年来无人车视频和各种新闻的不断预热,自动驾驶初创公司如雨后春笋一般成长起来,互利网巨头和传统车企都不甘落后纷纷宣布了路测和落地时间表。近日美国研究机构布鲁金斯研究院发表的一份研究报告指出,全球厂商已经在自动驾驶领域投资800亿美元。如果加上那些秘而不宣的自动驾驶研发计划,投资总额应远远超过这个数字。

多方赛跑的结果就是自动驾驶车辆上路的时间节点越来越明晰,这个距离近得令人惊讶。从10月中旬开始,谷歌旗下的Waymo就已经开始在美国亚利桑那州的公开道路上运营L4级别的全自动驾驶汽车,整个汽车上没有司机监控,完全由自动驾驶系统操控。

谷歌的中国对手百度,则宣布了明年量产L4级别的无人驾驶微循环车。这款车可在特定场景运营,也能应对各项实际的突发路况。

许多初创公司将明年视作一个重要节点。王劲创办的景驰科技就表示,明年第一季度要在国内开展无人车路测。另外有消息称,明年中国可能发布首张无人驾驶路测牌照,对于各个研究机构而言,这都是一个十足的利好消息。

自动驾驶不是一个新鲜的概念了,但其中的分级还未被大众广泛了解。SAE International(国际汽车工程师协会)从驾驶员的参与程度上来定义,将自动驾驶从L0到L5分成了6级。其中,L5是所有场景下的全自动驾驶,L4是有设计适用范围的无人车,也就是特定场景中的全自动驾驶。L2与L3则分别是辅助驾驶和半自动驾驶。

出于研究周期与商业化前景的平衡,目前绝大多数研发团队的目标还是在L3到L4,处于从需要驾驶员协助的半自动驾驶到固定路线的无人驾驶之间。

两条路线:谷歌与特斯拉

从车辆诞生时起,人们就有了让它自动行驶的构想,但真正成为现实,则是源于上个世纪80年代机器人技术的突破。进入21世纪后,随着计算机、地图、传感及汽车电子等相关技术的飞速发展,无人驾驶技术的研究迎来了爆发期。

DARPA Grand Chanllenge,中文译做DARPA无人驾驶技术挑战赛,是该领域影响最大的赛事之一,从中不仅走出了包括塞巴斯蒂安·特龙(Sebastian Thrun)等业界名人,也刺激了包括激光雷达企业Velodyne在内的一系列相关产业公司的发展。

在2007年的DARPA决赛中,谷歌创始人拉里·佩奇(Larry Page)搭乘公务机来到了现场。他渴望为谷歌寻找到新的创新方向,而无人驾驶就是他看中的第一个项目。两年后谷歌无人车研发启动,他先后引入了2005年、2007年的DARPA挑战赛冠军团队中的许多研究人员,包括特龙和克里斯·厄姆森(Chris Urmson),他们先后成为了该项目的第一个和第二个领导者。谷歌的这个举动,拉开了互联网企业进军自动驾驶领域的序幕。

回看当年,之所以谷歌的无人驾驶研究能够在一众车企中脱颖而出,2008年的经济危机应该是关键——当时美国许多车企被迫削减了研究经费,比如通用汽车是卡耐基梅隆大学的主要企业赞助商,而它在2009年申请了破产保护。而另外一个重要原因则是汽车制造商的判断失误,这些CEO们普遍认为这个技术可能会在2030—2040年间发展,谷歌的率先发力给自己争取到了一个好位置。

谷歌在山景城路测的无人驾驶原型车

在2010年代的前五年,谷歌几乎成为了无人车黑科技的代言人。但是随着谷歌自身商业化进程的滞步不前,后来者也开始迎头赶上,这其中最重要的事件,就是特斯拉自动辅助驾驶车型的量产。

特斯拉与谷歌不同。谷歌选择了一步到位直接研发L4级别完全自动驾驶技术,特斯拉则采取循序渐进的方式,先从L2级别的辅助驾驶做起。去年10月,马斯克宣布,所有正在生产的特斯拉都将拥有完全意义上的无人驾驶功能,包括Model S、Model X和Model 3,但这只是硬件层面上的含义。在系统层面上,目前特斯拉给车主提供的“增强版自动辅助驾驶”选装包,仍属于L2-L3级别,未来待特斯拉的L4技术研发落地后,后续的选装包将继续推送给车主,以达到L4级别的自动驾驶。

2016年5月,特斯拉的这一策略遭到了严重打击。美国俄亥俄州一个名叫Joshua Brown的特斯拉车主,在行驶过程中过于放松,把辅助驾驶的L2当成完全自动驾驶L4来用,在行车途中睡着,最终撞上重型卡车导致车毁人亡。这一事故引起了人们对于L2技术的怀疑,德国政府甚至要求特斯拉在该技术的相关宣传中撤除“Autopilot”(自动驾驶)这一具有误导性的单词。

上个月在媒体代表参观Waymo(2016年底谷歌无人车项目拆分后的公司)时,CEO约翰·科拉菲克( John Krafcik)告诉媒体,谷歌已经完全抛弃辅助自动驾驶,因为驾驶员会在自动驾驶过程中丧失情景感知能力,危险来临时也很难接管汽车。

在中国:百度先发制人,腾讯加入战局

谷歌无人车在加州进行路测的时候,作为中国的搜索巨头,百度也不甘落后,开始了深度学习和自动驾驶的研究。

这一研发项目始于2013年7月,直到一年后,百度才对外证实已经启动“百度无人驾驶汽车”研发计划。

2015年12月,百度在中关村软件园国际会议中心正式宣布成立自动驾驶事业部,并计划3年内实现自动驾驶汽车的商用化,5年内实现量产。与此同时,宝马与百度合作,以BMW 3系GT为基础研发的自动驾驶汽车辆在没有驾驶员干预的情况下,成功在北京五环进行实地路测。

在2016年的百度世界大会上,当时的百度高级副总裁、自动驾驶事业部负责人王劲宣布,百度获得了美国加州政府颁发的全球第15张无人车上路测试牌,此时的百度无人车开始成为了中国自动驾驶研究的名片。

随着王劲、余凯、彭军、佟显乔等百度系研发人员离职创立自己的自动驾驶公司,不断涌起的自动驾驶热潮中,百度研发团队也终于在2017年开始了全面商业化的努力。

2016年11月,百度无人车亮相乌镇世界互联网大会

2017年3月,百度宣布对自动驾驶事业部(L4)、智能汽车事业部(L3)、车联网业务进行整合,成立专门的智能驾驶事业群组(IDG),由百度集团总裁和首席运营官陆奇兼任总经理。4月“阿波罗计划”发布,百度宣布将向合作伙伴提供一个开放、完整、安全的软件平台,帮助他们结合车辆和硬件系统,快速搭建一套属于自己完整的自动驾驶系统。

这一计划为百度招揽了一大批产业链上的合作者,自动驾驶研究的商业化终于看见了曙光。运营上,百度选择与首汽约车合作,明年将有L3级别的智能驾驶车队在部分城市展开运营。在无人车的生产上,百度与金龙汽车合作生产的无人驾驶小巴车“阿波龙”,也将于明年7月份实现量产。这辆车既没有方向盘也没有驾驶位,是一辆真正的无人驾驶汽车。

从实际操作中看,百度同时走了L3和L4两条路线:一方面,L3的辅助驾驶系统能够与大多数汽车主机厂合作,快速实现智能汽车的商业化;另一方面,完全无人驾驶汽车必然是未来汽车研发的终极方向,已经储备了大量技术的百度在这方面也破局优势。虽然与谷歌只走一条路的战略不同,但双路线并存的战略也说明,百度并没有通过L3技术升级的方式,去实现完全自动驾驶。

坚持两条线都要走的战略似乎是中国公司的技术特点。中国的另一家互联网巨头腾讯,在自动驾驶的研发中也持此态度。

腾讯起步比百度晚了3年。上个月,腾讯自动驾驶实验室总监苏奎峰在腾讯的全球合作伙伴大会上公开承认了自动驾驶研发项目的存在,并公布了现在的一些进展。苏奎峰说,目前腾讯更关注在高速公路的半封闭环境下的L3解决方案,同时也会针对L4/5核心技术,在进行算法研究和数据上的积累。

自动驾驶面临的最大问题

自动驾驶面临太多的技术难题。传感设备,比如摄像头、激光雷达、雷达等需要变得更加高效,尤其是在恶劣气象条件下如何提高传感器的分辨效率,对于硬件和算法都提出了不小的挑战。

单车成本也是一大问题。为确保安全性,多系统冗余设计必不可少。对于消费级的无人车,业界普遍认为多传感器融合是基本保证。现在激光雷达价格偏高,车辆价格对于大多数消费者而言还是太高。

但是技术和成本的问题都是显性问题,随着算法的演进和车辆的量产,都将能逐步解决。在自动驾驶的普及过程中涉及到的社会成本才是其面临的最大问题。

社会成本要从物理层面和法律层面两方面来考虑。在物理层面上,基础设施建设需要大量升级。此前德国政府曾做出计划,为发展自动驾驶德国境内的每条高速公路均将可实现车辆与道路基础设施的无线通讯功能。此外,通过安装在路边的传感器以及无线设备还可以实现车辆间的通讯,这些均是自动驾驶汽车所需要的驾驶环境。

在无人驾驶时代,V2X能力,即车辆与车辆、车辆与基站、车辆与行人等之间的交互能力也至关重要。这对车联网的建设、IOT的普及和5G无线网络等提出了极高要求。这些也是社会需要付出的综合成本。

自动驾驶时代的V2X场景

除了无线通讯设备外,道路本身的平坦程度、车道线的可识别程度等都是一辆自动驾驶汽车能否安全行驶的关键。如果说在城市中心区域的主干道,这些问题尚且容易解决的话,在次干道、支路甚至于郊区和乡村公路,想要达到自动驾驶、甚至于无人驾驶的条件绝非易事。

在这些看得见的成本之外,“看不见的成本”在无形中制约者自动驾驶的发展。从一辆自动驾驶车辆走下生产线到走上城市道路,现行的交通法律显然远远不能满足需要。

今年7月6日,在百度AI开发者大会的现场直播中,李彦宏乘坐的百度研发自动驾驶车辆在“众目睽睽”之下违规,实线变道并且未打转向灯。之后,北京交管部门给百度开了自动驾驶第一张罚单。

对于百度而言,获得这张罚单还说得过去,毕竟车是自己的,系统是自己研发的,驾驶座上的人也是百度智能汽车事业部总经理顾维灏。但是如果是交付给用户的车辆,这张罚单应该开给谁呢?是交付车辆的汽车主机厂,还是研发整个自动驾驶系统的开发商,亦或是没有驾驶行为却拥有车辆的用户?

1949年版的《日内瓦道路交通公约》要求驾驶员“应当时刻能够控制其车辆”,而针对鲁莽驾驶的规定则通常要求“有意识地、有目的地操纵车辆”,这一规定在完全自动驾驶时代应当如何适用?

斯坦福大学的法学教授布莱恩特·沃克·史密斯(Bryant Walker Smith)曾撰写过一份文档,提出了在自动驾驶情境下如何调整法律的建议,包括把“驾驶员”这一术语改为包括不具备常规意义上的眼睛或者耳朵的计算机等等。修改法律的困难之处在于,法律能够要求人类规范自己的行为,但现在它无法要求一个人工智能系统去做什么事,除非法律的制定者能够清楚了解这个人工智能系统能做什么事不能做什么事,在纷繁的技术面具下去判定这些责任究竟是属于谁——可以想见的是,随着自动驾驶时代到来,现有的交通法规也将会迎来一场大变革

3,特斯拉自动驾驶耗电量会增加吗

特斯拉自动驾驶耗电量会增加吗

自动驾驶反而耗电更低,不明白为什么、我自己开大概一箱电370公里、频繁开自动驾驶能开到400多公里

4,特斯拉的自动驾驶有什么隐患吗?

特斯拉的自动驾驶有什么隐患吗?

据美国权威消费者期刊《消费者报告》报道称,特斯拉对其Autopilot功能的最新更新引发了“严重的安全担忧” 。特斯拉Navigate on Autopilot功能于去年首次推出,专门用于高速公路驾驶,并于4月份更新了新选项。特斯拉的自动驾驶系统于5月2日进行了最新的升级,升级后,系统允许车辆自行更换车道。

对此,特斯拉回应称:“自动驾驶导航基于地图数据、车队数据和车辆传感器提供的数据。但是,驾驶员有责任始终控制汽车,包括安全地执行换道。而该杂志的测试表明,这项功能的表现比人类驾驶员更糟糕,甚至为人类带来了新的风险。《消费者报告》审查了Autopilot的一项可选功能,该功能允许汽车自动更换高速公路上的车道。

该功能需要由驾驶员启用,在没有驾驶员确认的情况下自动切换通道,直到它被禁用或Navigate on Autopilot关闭为止。由于《消费者报告》是一家备受推崇的消费者评论杂志,因此他们的表态可能对汽车制造商构成问题。该杂志希望减轻Autopilot驾驶员辅助系统的安全隐患,该系统近年来在三次致命车祸中使用过。

该公司最近为其Autopilot系统提供的选项之一,是允许车辆自行更换车道而无需驾驶员确认。虽然驾驶员可以通过移动转向信号或在触摸屏上取消汽车的变化来阻止车辆变道,但该杂志发现这项功能与人类驾驶员相比较水平较低。

5,自动驾驶公司最新排名:特斯拉为何垫底?

自动驾驶公司最新排名:特斯拉为何垫底?

19家企业被分为四类:领导者、竞争者、挑战者和追随者,下面列出这四类企业具体包括哪些(排名分先后)。

领导者:通用、福特、Waymo、大众、戴姆勒-博世、雷诺日产联盟、安波福、宝马-英特尔-FCA

竞争者:沃尔沃-Autoliv-爱立信-Zenuity、PSA、Navya、百度-北汽、捷豹路虎、丰田、现代

挑战者:Uber、特斯拉、本田和苹果

追随者:无

综合排名中的前十名:通用、Waymo、戴姆勒-博世、福特、大众、宝马-英特尔-FCA、安波福、雷诺-日产联盟、沃尔沃-Autoliv-爱立信-Zenuity、PSA。

6,为何说自动驾驶比人安全10倍?

为何说自动驾驶比人安全10倍?

近日,特斯拉CEO埃隆·马斯克在接受美国CBS(哥伦比亚广播公司)专访时表示,自动驾驶比人类司机更靠谱更安全。

马斯克驾驶最新的Model 3,向CBS记者展示了Autopilot自动驾驶模式,但由于特斯拉的自动驾驶系统需要驾驶者手握方向盘才可以启动,所以遭到记者的提问——“既然双手仍必须要放在方向盘上,那自动驾驶又有什么存在的意义呢?”

马斯克表示,因为现在的自动驾驶方式,能让自动驾驶系统在自运行时,发生事故的可能性更小,可以将发生事故的概率降低10倍。

但他承认自动驾驶永远不会完美。因为在现实世界中,没有什么是完美的。

延伸阅读:

2018年3月,在美国加州硅谷附近的101号高速公路发生一起特斯拉Model X的严重车祸,这台特斯拉Model X在撞向护栏后电池起火,烧毁严重,车主遇难。随后特斯拉发布声明证实那台Model X在发生车祸时开启了Autopilot自动驾驶模式,但由于驾驶者双手离开方向盘且在碰撞时没有采取任何措施,才引发这次事故。

本文相关词条概念解析:

驾驶

驾驶,指操纵车船或飞机等使行驶。语出清魏源《圣武记》卷十四:“今即实估实造,而停泊不常驾驶,风浪无从练习,非若夷船之日涉重洋,则亦不过数年而舱朽柁蔽矣。”

百度

百度(Nasdaq:BIDU)是中文搜索引擎网站。2000年1月由李彦宏创立于北京中关村,致力于向人们提供“简单”,“可依赖”的信息获取方式。“百度”二字源于中国宋朝词人辛弃疾的《青玉案·元夕》词句“众里寻他千百度”,象征着百度对中文信息检索技术的执着追求。美国时间2龚宇的初步非约束性收购提议,计划收爱奇艺100%的股份。2016年2月,百度发布了截至12月31日的2015财年第四季度财报,公司第四季总营收为186.99亿元。2016年4月13日,百度宣布业务架构重组成立“百度搜索公司”。2016年5月16日,百度与安徽省芜湖市人民政府在北京签订合作协议。2016年6月13日,百度与泰国旅游局召开新闻发布会,双方正式签订战略合作备忘录。2016年6月22日,百度晋升朱光为高级副总裁。

网友评论